Green HPC with Low-power Manycores

Márcio Castro

marcio.castro@ufsc.br - www.marciocastro.com

Graduate Program in Computer Science (PPGCC) Department of Informatics and Statistics (INE) Federal University of Santa Catarina (UFSC)

EnergySFE Workshop 2016 Grenoble, France

About me

Associate Professor

Federal Univ. of Santa Catarina (UFSC)
Florianópolis, SC, Brazil

Distributed Systems Research Laboratory (LaPeSD)

- -7 faculty members
- -8 Ph.D. students
- -17 M.Sc. students
- -6 undergraduate students

Research Interests

- Parallel programming models
- Thread and data affinity
- HPC applications
- Parallel skeletons
- Scheduling and load balancing
- Energy-aware algorithms
- Multicores, manycores and accelerators
- Performance analysis

Students

Graduate students (M.Sc.)

Pedro Penna

• Workload-aware loop scheduling on multicores

Alyson Deives

• Parallel skeletons for heterogeneous architectures

Undergraduate student in Computer Science

Emmanuel Podestá Jr.

• Energy-efficient stencil computations on lowpower manycore processors

Motivation

Motivation

Until the last decade

 Performance of HPC platforms has been quantified by their processing power (Flops)

Nowadays

- Energy efficiency (Flops/Watt) is as important as processing power
- Critical aspect to the development of scalable systems

- Defense Advanced Research Projects Agency, EUA (DARPA) report
 - Acceptable energy efficiency for Exascale systems → 50 GFlops/Watt
 - − Current HPC systems → 7 GFlops/Watt

Motivation

- New alternatives for low-power HPC
 - Low-power manycore processors
 - Hundreds of cores in a single chip
 - Very low power consumption: few tens of watts
 - Examples:
 - Mellanox TILE-Gx
 - Sunway SW26010 (TaihuLight)
 - Kalray MPPA-256

- Overview of MPPA-256
- Current research efforts
- Results
- Conclusions and future works

MPPA-256 overview

• Kalray

 French semiconductor and software company (Grenoble and Paris) developing and selling a new generation of manycore processors

• MPPA-256

- Multi-Purpose Processor Array (MPPA)
- Manycore processor: 256 cores in a single chip
- Low power consumption (less than 20W)

- 256 cores (PEs) @ 400 MHz: 16 clusters, 16 PEs per cluster
- PEs share 2 MB of memory
- Absence of cache coherence protocol inside the cluster
- Network-on-Chip (NoC): communication between clusters
- 4 I/O subsystems: 2 connected to external memory

A master process runs on an RM of one of the I/O subsystems

- The master process spawns slave processes
- One slave process per cluster

MPPA-256

- The slave process runs on the PEO and may create up to 16 threads, one for each PE
 - Pthreads or OpenMP
- Threads share 2 MB of memory

- Communications take the form of remote writes
- Data is sent through the **NoC**

- Many challenges must be faced when developping efficient parallel applications on MPPA-256
 - -Hybrid programming model
 - -Memory constraints
 - -NoC

- Challenges: hybrid programming model
 - -Shared + distributed memory
 - -OpenMP/Pthreads + Low-level comm. API

Challenges: memory

- Scientific apps. don't fit into 32MB
- Explicit data transfers between the I/O subsystem (DDR) and clusters' internal memory

EnergySFE Workshop 2016 - Grenoble, France

Challenges: NoC

- Low-level API to perform remote read/write operations
- Asynchronous data transfers to overlap communications with computations

Research goals

- Evaluate the use of MPPA-256 for high performance computing
- -Adapt parallel applications for MPPA-256
 - Different workloads: cpu-bound, memory-bound, communication-bound, ...
 - TSP, K-Means and Seismic Wave Propagation
- Propose new programming models to ease the development of parallel applications for MPPA-256

• Research goals (cont.)

- Compare the obtained results with other parallel processors
 - General-purpose multicores, embedded multicores and accelerators (GPUs and Xeon Phi)
- -Consider two main metrics:
 - Performance (time-to-solution, speedup, ...)
 - Energy-to-solution

Results

Processors

General-purpose Processors

- -Intel Xeon E5
 - 8-core Intel Xeon E5 at 2.4 GHz
- -SGI Altix UV 2000
 - NUMA with 24 8-core Intel Xeon E5 nodes (192 cores)

Accelerators

- -GPU NVIDIA
 - Tesla K20 (2496 cores, 758 MHz)
- -Intel Xeon Phi
 - 57 cores (4-way multithreaded), 1.10 GHz

Embedded Processors

- -Carma: NVIDIA Tegra 3, 1.3 GHz
- -Exynos 5: ARM Cortex-A15 com 4 cores, 1.6 GHz

Results

K-Means Clustering

- Given a set of *n* points in a real *d*-dimensional space, the problem is to partition these *n* points into *k* partitions, so as to minimize the mean squared distance from each point to the center of the partition (centroid) it belongs to
- Mixed workload (CPU/Memory)

K-Means

Emilio Francesquini, *et al.* On the Energy Efficiency and Performance of Irregular Application Executions on Multicore, NUMA and Manycore Platforms. In: International Journal of Parallel and Distributed Computing (JPDC), 2015.

Results

Seismic Wave Propagation

-Finite-differences method is used for solving the wave propagation problem

Seismic Wave Propagation

- A two-level tiling scheme to exploit the memory hierarchy of MPPA-256
- Software prefetching to overlap data transfers with computations

Seismic Wave Propagation

Márcio Castro, *et al.* Seismic Wave Propagation Simulations on Low-power and Performance-centric Manycores. Parallel Computing (PARCO), 2016

Seismic Wave Propagation

Márcio Castro, *et al.* Seismic Wave Propagation Simulations on Low-power and Performance-centric Manycores. Parallel Computing (PARCO), 2016

EnergySFE Workshop 2016 - Grenoble, France

Conclusions and Future Works

Conclusions and Future Works

Low-power manycores

—Opportunity to perform highly-parallel energy-efficient computations :-)

-But... they are very difficult to program :-(

Current efforts

-High-level programming models for MPPA-256 via *parallel skeletons*

Conclusions and Future Works

- PSkeIMPPA: a back-end for the PSkel¹ stencil framework for the MPPA-256
 - Transparent data movements between the I/O subsystem (DDR) and clusters
 - Optimizations can be included at the runtime level
 - All applications implemented with PSkel can run on MPPA-256 without any source code modifications

¹ http://pskel.github.io

Conclusions and Future Works

• PSkelMPPA: preliminary results

Questions?

EnergySFE Workshop 2016 - Grenoble, France