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Global Scheduling

problems + research + interests

Fault Tolerance

problems + research + interests
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Global Scheduling



Global Scheduling Problems

poor initial mapping
load dynamicity
platform sharing
heterogeneous platforms
DVFS changes
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Global Scheduling Problems

poor initial mapping
complex communication patterns
hierarchical machine topologies
platform sharing

heterogeneous platforms
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Global Scheduling Problems

long computing times
low resource usage
excessive data movement

slow scheduling algorithms
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Global Scheduling Research

What we want
balanced loads
optimized communications
fast scheduling algorithms
least migrations possible
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Global Scheduling Research

Periodic load balancing

principle of persistence

topology-aware load balancing
energy-aware load balancing
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Global Scheduling Research

topology-aware load balancing

NucolB
greedy algorithm + NUMA node latency

HwTopolB

refinement algorithm + latency & bw + convergence

HierarchicallLB

LB at node level and at whole machine level
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Global Scheduling Research

Application: Ondes3D
OD = overdecomposition (512 tasks/ 32 PUs)

Timestep
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Global Scheduling Research

Application: LeanMD
Weak scalability: Total execution time

Number of Opt32 compute nodes

Baseline M HwTopolLB M GreedyCommLB M ScotchLB ™ RefineCommLB
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Global Scheduling Research

Strong scalability: LeanMD
Speedup over the baseline on 2 CNs
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Global Scheduling Research

energy-aware load balancing
LB + DVFS on underloaded resources

Fine-Grained EnergylLB

per core

Coarse-Grained EnergylLB

per socket + hierarchical algorithm
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Global Scheduling Research
Example: Lulesh + FG EnergylLB
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Global Scheduling Research
Example: Lulesh + FG EnergylLB
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Global Scheduling Interests

+ hierarchical algorithms [+ energy]
+ distributed algorithms [+ energy]
+ platforms for experiments [+ energy]
+ applications
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Fault Tolerance

For more information, we can check with Paolo Rech :-)
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Fault Tolerance Problems

: the device is not permanently
damaged, but the particle may generate:

One or more bit-flips
Single Event Upset (SEU) g g . Q
Multiple Bit Upset (MBU)
>

Transient voltage pulse
Single Event Transient (SET)
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Fault Tolerance Problems

data caches
register files

ALU
scheduler

Crash

instruction cache
scheduler
PCle bus
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Fault Tolerance Research




Fault Tolerance Research

Flash GPU FPGA
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Fault Tolerance Research

Intel NVIDIA
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Fault Tolerance Research
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Fault Tolerance Research

Parallel algorithms’ reliability
SDC rates vary ~3 orders of magnitude
(details on Oliveira et al. Trans. Comp. 2015)
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Fault Tolerance Research

ECC reduces the SDC FIT of ~1 order of magnitude

(there is almost no code dependence)
W ECCOFF | ECCON

NW lavaMD Hotspot

Failure In Time @NYC
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Fault Tolerance Research

ECC increases the Crash FIT of about 50%
(there is almost no code dependence)

W ECCOFF [l ECCON Double Bit

Errors cause a

crash
scheduler is not
NW lavaMD Hotspot

protected

Failure In Time @NYC
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Fault Tolerance Research

When the ECC is ON Crashes are more likely to occur
than SDCs (this is GOOD for HPC centers!)

SDC

i I ‘ l :

lavaMD Hotspot

Failure In Time @NYC
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Fault Tolerance Research

ABFT: technique designed specifically for an algorithm.

Usually ABFT requires input coding, algorithm
modification, and output decoding with error
detection/correction
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Fault Tolerance Research — ABFT for FFT
*J.Y. Jou and Abraham ‘88
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Fault Tolerance Research

ECC x ABFT

®mUnhardened
BECC

I | III :

SDC crash SDC crash
MxM FFT

FIT [log scale]
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Fault Tolerance Research

ECC x ABFT

®mUnhardened

mECC

BABFT
\\Y FFT

normalized execution time
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Fault Tolerance Research

Effects of optimizations: MxM

W naive
I = opt.
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Fault Tolerance Interests

+ applications & kernels for CPU & GPU
+ platforms for energy measurement
+ experiments with radiation
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