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HPC reliability importance
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Available Accelerators
Modern parallel accelerators offer: 

- Low cost
- Flexible platform
- High efficiency (low per-thread consumption)
- High computational power and frequency
- Huge amount of resources
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Available Accelerators
Modern parallel accelerators offer: 

- Low cost
- Flexible platform
- High efficiency (low per-thread consumption)
- High computational power and frequency
- Huge amount of resources
- Reliability?

Error Rate
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Titan
Titan (Oak Ridge National Lab): 18,688 GPUs

High probability of having a GPU corrupted
Titan Detected Uncorrectable Errors MTBF is ~44h* 

*(field and experimental data from HPCA’15)
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HPC bad stories
Virginia Tech’s Advanced Computing facility built a supercomputer 
called Big Mac in 2003
● 1,100 Apple Power Mac G5
● Couldn't boot because of the failure rate
● Power Mac G5 did not have error-correcting code (ECC) memory
● Big Mac was broken apart and sold on-line

Jaguar – (2009 #1 Top500 list) ● 360 terabytes of main memory ●
350 ECC errors per minute

ASCI Q – (2002 #2 in Top500 list) 
● Built with AlphaServers 
● 7 Teraflops 
● Couldn't run more than 1h without crash 
● After putting metal side it could last 6h before crash 
● Address bus on the microprocessors were unprotected (causing 
the crashes) 

4



Paolo Rech – Grenoble, France

Outline

The origins of the issue:
§ Radiation Effects Essentials
§ Error Criticality in HPC

Understand the issue:
§ Experimental Procedure
§ K40 vs Xeon Phi
Toward the solution of the issue:
§ ECC – ABFT – Duplication
§ Selective Hardening
What’s the Plan?
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Terrestrial Radiation Environment

6

Cosmic rays could be so 
energetic to pass the Van 
Allen belts
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Terrestrial Radiation Environment

Galactic cosmic rays interact with atmosphere
shower of energetic particles:
Muons, Pions, Protons, Gamma rays, Neutrons

13 n/(cm2�h) @sea level*

*JEDEC JESD89A Standard
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Cosmic rays could be so 
energetic to pass the Van 
Allen belts



Paolo Rech – Grenoble, France

Altitude and Radiation

Maximum ionization @ ~13KM above sea level
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Altitude and Radiation

Maximum ionization @ ~13KM above sea level
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Radiation Effects - Soft Errors

0

1

IONIZING PARTICLE

1

0

• One or more bit-flips
Single Event Upset (SEU)
Multiple Bit Upset (MBU)

Soft Errors: the device is not permanently damaged, 
but the particle may generate: 

• Transient voltage pulse
Single Event Transient (SET)

FFLogic

IONIZING
PARTICLE
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Silent Data Corruption vs Crash

Soft Errors in:
-data cache
-register files
-logic gates (ALU)
-scheduler

Soft Errors in:
-instruction cache
-scheduler / dispatcher
-PCI-e bus controller

Silent Data Corruption

DUE (Crash)
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Radiation Effects on Parallel Accelerators
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Output Correctness in HPC

…
A single fault can propagate to 
several parallel threads:
multiple corrupted elements. 
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Output Correctness in HPC

error can be in the
float intrinsic variance

Values in a given range are 
accepted as correct in 
physical simulations

Imprecise computation is being applied to HPC 

Not all SDCs are critical for HPC applications

…
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Output Correctness in HPC

error can be in the
float intrinsic variance

Values in a given range are 
accepted as correct in 
physical simulations

Imprecise computation is being applied to HPC 

Not all SDCs are critical for HPC applications

Goal: quantify and qualify SDC in
NVIDIA and Intel architectures.

…
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A single fault can propagate to 
several parallel threads:
multiple corrupted elements. 
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Outline

The origins of the issue:
§ Radiation Effects Essentials
§ Error Criticality in HPC

Understand the issue:
§ Experimental Procedure
§ K40 vs Xeon Phi
Toward the solution of the issue:
§ ECC – ABFT – Duplication
§ Selective Hardening
What’s the Plan?
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Radiation Test Facilities

12

Irradiation of Chips Electronics
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Experimental Setup

13
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Radiation Test are NOT for dummies

What can (and actually went) wrong:
- Ethernet cables failures
- Bios checksum error
- HDD failures
- Linux GRUB failure
- power plug failure (wow, this was risky)
- board boot failure
- GPU fell off the BUS (this was funny)
- mic is lost
- etc… etc… etc… 

- Heather/Sean, can you add something to the list?
14
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GPU Radiation Test Setup

microcontrollers
FPGA

SoCFPGASoC

Flash GPU
APU
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GPU Radiation Test Setup

23/48

GPU power control 
circuitry is out of beam

NVIDIA
K40

Intel
Xeon-Phi

desktop 
PCs

AMD
APU
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@LANSCE 1.8x106 n/(cm2 h)
@NYC 13 n/(cm2 h)

We test each architecture for 
800h, simulating 9.2x108 h of 
natural radiation
(~ 91,000 years)

Neutrons Spectrum
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@LANSCE 1.8x106 n/(cm2 h)
@NYC 13 n/(cm2 h)

We test each architecture for 
800h, simulating 9.2x108 h of 
natural radiation
(~ 91,000 years)

Neutrons Spectrum

All the collected SDCs are publicly available:
https://github.com/UFRGS-CAROL/HPCA2017-log-data
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- DGEMM: matrix multiplication
- lavaMD: particles interactions
- Hotspot: heat simulation
- Needleman–Wunsch: Biology
- CLAMR: DOE’s workload
- Quick- Merge- Radix-Sort
- Matrix Transpose: Memory
- Gaussian

Selected Algorithms
We select a set of benchmarks that:

- stimulate different resources
- are representative of HPC applications
- minimize error masking (high AVF) 
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Xeon Phi vs K40 SDC rate
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Xeon Phi error rate seems lower than Kepler, but:
-Xeon Phi is built in 3D Trigate, Kepler in planar CMOS
-Xeon Phi and K40 have different throughput
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Parallelism Management Reliability
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~95% processor resources used with smallest input
Increasing the input size we increase the #threads:
-Xeon-Phi error rate remains constant (<20% variation)
-K40 SDC error rate increases with input size

K40 Xeon Phi
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Parallelism Management Reliability
K40 Xeon-Phi

FIT increases with input 
size: HW scheduler is 
prone to be corrupted!

data of 2048 active 
threads is maintained in 
the register file

constant FIT rate:
embedded OS is OK!

only 4 threads/core are 
maintained. Other 
threads data in the main 
memory (not exposed)
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Xeon Phi
K40Xeon-Phi GFlops 

almost constant 

K40 Gflops
rapidly increase

Parallelism Management Reliability
K40 throughput increases with input size.
Reliability vs Performances trade-off should be considered
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Mean Workload Between Failures

Parallel
threads

Error rate

Throughput
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Mean Workload Between Failures

Parallel
threads

Error rate
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Throughput
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Mean Workload Between Failures

Which architecture produces a higher amount of data 
before experiencing a failure? Is there a sweet spot?

Mean Workload Between Failures

Parallel
threads

Error rate

Throughput

Error rate

Throughput
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DGEMM MWBF
Xeon-Phi MWBF decreases significantly with input size.
Even if more prone to be corrupted, Kepler produces 
more correct data (if parallelism is exploited)

27
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Quantify and Qualify SDCs

Number of incorrect elements

Relative Error
how different the error is 
from the expected value

Spatial Locality

x
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x x x
x  x x

x x
x

x
x

x

line square random
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Number of Incorrect Elements vs Relative Error

DGEMM lavaMD

29

K40
Xeon Phi
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Number of Incorrect Elements vs Relative Error

DGEMM lavaMD

Greater different 
from expected value

29

K40
Xeon Phi
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Number of Incorrect Elements vs Relative Error

DGEMM lavaMD

Higher number of 
corrupted elements

Greater different 
from expected value

29

K40
Xeon Phi
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Number of Incorrect Elements vs Relative Error

DGEMM lavaMD

Higher number of 
corrupted elements

Greater different 
from expected value

BAD: high number of corrupted elements,
which are very different from the expected output  

29

K40
Xeon Phi
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Number of Incorrect Elements vs Relative Error

DGEMM lavaMD

K40 few corrupted elements, value similar to expected one
Xeon Phi: a lot of corrupted elements,
which are very different from expected value 

29

K40
Xeon Phi
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Number of Incorrect Elements vs Relative Error

DGEMM lavaMD

Both K40 and Xeon Phi have few corrupted elements.
K40 corruption are very different from the expected one

29

K40
Xeon Phi
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Number of Incorrect Elements vs Relative Error
Purely arithmetic operations are more reliable (and faster) on 
the K40 (GPUs have shorten and faster pipelines). 
Xeon Phi is more reliable for Finite Different Methods (lavaMD), 
which are based on transcendental functions (exp).

29

DGEMM lavaMD
K40
Xeon Phi
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Outline

The origins of the issue:
§ Radiation Effects Essentials
§ Error Criticality in HPC

Understand the issue:
§ Experimental Procedure
§ K40 vs Xeon Phi
Toward the solution of the issue:
§ ECC – ABFT – Duplication
§ Selective Hardening
What’s the Plan?
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Experimental Results (ECC OFF)
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Single Error Correction Double Error Detection ECC.
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ECC ON - SDC

1
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MxM FFT NW lavaMD Hotspot

K2
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ECC reduces the SDC FIT of ~1 order of magnitude
(there is almost no code dependence) 

ECC OFF ECC ON
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ECC ON - Crash

MxM FFT NW lavaMD Hotspot

K2
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1
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10000

ECC increases the Crash FIT of about 50%
(there is almost no code dependence) 

Double Bit Errors 
cause a crash

scheduler is not 
protected

ECC OFF ECC ON
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MxM FFT NW lavaMD Hotspot

K2
0 

FI
T

ECC ON – SDC vs Crashes
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When the ECC is ON Crashes are more likely to occur 
than SDCs (this is GOOD for HPC centers!)

Crash
SDC
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Algorithm Based Fault Tolerance
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ABFT: technique designed specifically for an algorithm.
ABFT requires: input coding, algorithm modification, 
and output decoding with error detection/correction
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Huang and Abraham ’84
Rech et al., TNS ‘13
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FFT Hardening Idea*
... ...
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*J.Y. Jou and Abraham ‘88
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ECC vs ABFT
FI

T 
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MxM FFT
SDC crash SDC crash

ECC reduces FIT of ~10 
times, ABFT of ~56 times! 

ECC increases Crashes 
of 50% ABFT of 10%! 
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Duplication With Comparison

Spatial: block i and i+N are 
duplicated

E-O Spatial: block i and i+1 
are duplicated

Time: a thread executes 
twice the operations

SM0 a b c d

SM1 a' b' c' d'
time

SM0 b b' d d'

SM1 a c c'
time

a'

SM0 b & b' d & d'

SM1 a & a' c & c'
time
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Hotspot - DWC results*

1
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Unhardened
ECC
Spatial DWC
E-O Spatial DWC
Time DWCFI

T 
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SDC crash

Spatial DWC detects all SDC
Spatial E-O detects 80% of SDC
Time DWC detects 90% of SDC

Only Time DWC reduces 
Crashes (no additional 
Blocks scheduling 
required)

DWC is promising: it is generic, easily implemented, and 
effective…

BUT execution time overhead for Spatial DWC and Spatial E-O 
is 2.5x and for Time DWC is 2x (data is not copied)

*details on Oliveira et al. 
Trans. Nucl. Sci., 2014
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Duplicate only what REALLY matters

analyze SDC criticality: are there “acceptable” SDCs? 

example: CLAMR (DOE workload) experimental result

SDC causes a 
single pixel error

SDC causes a 
huge error

What’s next? Selective Hardening!
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Tolerable SDCs

Xeon Phi

K40 - ECC

K40
TitanX
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Tolerable SDCs

Xeon Phi

K40 - ECC

K40
TitanX

Output must match the expected output (0% tolerance)
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Tolerable SDCs

Xeon Phi

K40 - ECC

K40
TitanX

Output must match the expected output (0% tolerance)

Increasing acceptable difference at the output
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Tolerable SDCs

Xeon Phi

K40 - ECC

K40
TitanX

If we accept a 2.5% of variance from the expected 
value more than 60% of SDCs could be tolerated 
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Tolerable SDCs

46

K40 K40 ECC Titan X

Gaussian

DGEMM

lavaMD

Hotspot
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Tolerable SDCs
K40 K40 ECC Titan X

Gaussian

DGEMM

lavaMD

Hotspot

Hotspot: with a 0.1% of tolerance 
the error rate is reduced of 90%!
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2. detect SW-HW causes for critical SDCs
-code analysis
-fault-injection
(NVIDIA SASSIFI and UFRGS CAROL-FI)

1. analyze SDC criticality: are there “acceptable” SDCs? 

Duplicate only what REALLY matters

46

What’s next? Selective Hardening!
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2. detect SW-HW causes for critical SDCs

3. harden selected portions of the code

4. evaluate enhanced reliability and performances

1. analyze SDC criticality: are there “acceptable” SDCs? 

Duplicate only what REALLY matters

46

-code analysis
-fault-injection
(NVIDIA SASSIFI and UFRGS CAROL-FI) 

What’s next? Selective Hardening!
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SASSI-FI and CAROL-FI

SASSI-FI: NVIDIA
architectural-level fault-injector

47
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SASSI-FI and CAROL-FI

CAROL-FI: UFRGS high-Level Fault Injector
for Xeon-Phi and any X86-base processor
Modify content of memory currently allocated.
Fault Injector requirements:
–GDB with python support
–OS Interruption signals
–Compile the source code in debug mode

SASSI-FI: NVIDIA
architectural-level fault-injector
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CAROL-FI

Fault model can be adapted
We only inject single bit-flip

Overhead ~5x
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Radiation Data vs CAROL-FI

Radiation Fault-injection

Radiation and FI give very different information.
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CAROL-FI Results
We have injected more than 67,000 faults
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Results - DGEMM

95% of adverse outcomes come
from matrices and 

loop control variables

Matrices: 
Mem occupation

Chance to occur SDC or DUE

Loop control variables: 
Mem occupation

Chance to occur SDC or DUE
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Results - CLAMR

Most adverse outcomes come
from 3 Mesh components 

Sort 
K-D Tree

Other Mesh operations

Faults in Sort and K-D Tree
are equally harmful
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Results - Hotspot

Most harmful faults come from
constants and control variables

Small portion of memory 
causes most harm:

Easy to protect
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Results - LavaMD

Most harmful faults come from
Input arrays(charge and distance)

Big portion of memory 
causes most harm:

Hard to protect
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Results - LUD

SDCs are generated by 
faults in matrices

DUEs are generated by 
faults in control variables
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Results - NW

SDCs and DUEs are generated by 
faults in matrices(with an equal chance)

Big portion of memory 
causes most harm:

Hard to protect

54



Paolo Rech – Grenoble, France

Results

CAROL-FI insights:
– Selective hardening will be effective for DGEMM 

and Hotspot (small portion of memory causes 
harm)

– Selective hardening may not be effective for 
LavaMD and NW (big portion of memory causes 
harm)

– CLAMR: specific operations should be hardened 
(Sort and K-D Tree)
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What’s The Plan?
Exascale = 55x Titan. Can we afford a 55x error rate? 
Probably not. 
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What’s The Plan?
Exascale = 55x Titan. Can we afford a 55x error rate? 
Probably not. 
- We can show how SDC appears at the output, to 
ease detection
- Understand SDC criticality. Not all errors significantly 
affect output: there are “acceptable” SDC
- Fault-injection to better understand error propagation
SASSIFI: NVIDIA architectural-level fault-injector
CAROL-FI: UFRGS fault-injector for Xeon Phi and X86
- Propose selective-hardening solutions
(duplicate only what matters, what REALLY matters)
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