Energy-aware Scheduling and Fault Tolerance Techniques for the Exascale Era

IV Congreso REDU

December 1st, 2016

Laércio Lima Pilla

laercio.pilla@ufsc.br

Federal University of Santa Catarina, Brazil

Agenda

EnergySFE Project

Global Scheduling

problems + research + interests

Fault Tolerance

problems + research + interests

STIC-AmSud Project Grant 99999.007556/2015-02

Members

Enrique Vinicio Carrera - EC

François Broquedis - FR

Frédéric Desprez - FR

Jean-François Méhaut - FR

Laércio Lima Pilla - BR

Lucas Mello Schnorr - BR

Márcio Bastos Castro - BR

Mario Antônio Dantas - BR

Pablo Francisco Ramos - EC

Paolo Rech - BR

Philippe O. A. Navaux - BR

Vanessa C. Vargas - EC

Energy-aware Scheduling and Fault Tolerance Techniques for the Exascale Era

Increasing performance with limited energy

Research Questions

1. How to schedule tasks and threads that compete for resources with different constraints while considering the complex hierarchical organization of future Exascale supercomputers?

Research Questions

2. How to tolerate faults without incurring in too much overhead in future Exascale supercomputers?

Research Questions

3. How scheduling and fault tolerance approaches can be adapted to be energy-aware?

Global Scheduling

problems + research + interests

objectives

shortest execution time
highest throughput
highest utilization rate
fairness

•••

load imbalance

poor initial mapping
load dynamicity
platform sharing
heterogeneous platforms
DVFS changes

...

communication slowdown

poor initial mapping
complex communication patterns
hierarchical machine topologies
platform sharing
heterogeneous platforms

energy wastage

long computing times
low resource usage
excessive data movement
slow scheduling algorithms

What we want with scheduling balanced loads optimized communications fast scheduling algorithms least migrations possible

Periodic load balancing principle of persistence

topology-aware load balancing energy-aware load balancing

topology-aware load balancing

NucolB

greedy algorithm + NUMA node latency

HwTopoLB

refinement algorithm + latency & bw + convergence

HierarchicalLB

LB at node level and at whole machine level

Application: Ondes3D

irregular loads

dynamic loads

Application: Ondes3D

irregular loads

dynamic loads

Application: Ondes3D

OD = overdecomposition (16 tasks / core)

Application: Ondes3D

OD = overdecomposition (16 tasks / core)

◆Baseline - timestep ◆OD - average PU load ◆HwTopoLB - timestep ◆NucoLB - timestep

Application: LeanMD

Weak scalability: Total execution time

Strong scalability: LeanMD

Speedup over the baseline on 2 CNs

energy-aware load balancing

LB + DVFS on underloaded resources

Fine-Grained EnergyLB

per core

Coarse-Grained EnergyLB

per socket + hierarchical algorithm

Example: Lulesh + FG EnergyLB

Example: Lulesh + FG EnergyLB

Global Scheduling Interests

- + hierarchical algorithms [+ energy]
- + distributed algorithms [+ energy]
- + platforms for experiments [+ energy]
 - + applications

Fault Tolerance

problems + research + interests

failure: systems stops working as expected fault → error → failure

Fault Tolerance

use redundancy to stop failures from occurring

usual fault tolerance schemes

checkpoint & restart

cannot notice corrupted data

duplication with comparison

expensive in resource (time & energy)

Soft Errors: the device is not permanently damaged, but a particle may generate:

PARTICLE

Logic

One or more bit-flips
Single Event Upset (SEU)
Multiple Bit Upset (MBU)

Transient voltage pulse Single Event Transient (SET)

FF

Silent Data Corruption

data caches

register files

ALU

scheduler

Crash

instruction cache scheduler
PCIe bus

@LANSCE 1.8x10⁶ n/(cm² h) @NYC 13 n/(cm² h)

Parallel algorithms' reliability

SDC rates vary ~3 orders of magnitude

ECC reduces the SDC FIT of ~1 order of magnitude (there is almost no code dependence)

ECC increases the Crash FIT of about 50% (there is almost no code dependence)

When the ECC is ON Crashes are more likely to occur than SDCs (this is GOOD for HPC centers!)

ABFT: technique designed specifically for an algorithm.

Usually ABFT requires input coding, algorithm modification, and output decoding with error detection/correction

Fault Tolerance Research – ABFT for FFT

ECC x ABFT

ECC x ABFT

Effects of optimizations: MxM

MWBF: Mean Workload Between Failures

Xeon-Phi MWBF decreases significantly with input size.

Even if more prone to be corrupted, Kepler produces more correct data (if parallelism is exploited)

Fault Tolerance Interests

- + applications & kernels for CPU & GPU
 - + platforms for energy measurement
 - + experiments with radiation

Conclusions

Conclusions

EnergySFE

international collaboration
three research questions
lots of work in scheduling and fault tolerance
lots more to be done

Energy-aware Scheduling and Fault Tolerance Techniques for the Exascale Era

Thank you.

Laércio Lima Pilla

laercio.pilla@ufsc.br

Federal University of Santa Catarina, Brazil

